RH Logo

All
My Hubs

Cell Biology

Trending
Today
All
Papers
Posts

Sign in to discover all of the research papers you care about, live as they're published.

118
Date Added: Aug 3, 2021
Date Added: Aug 3, 2021
Exhausted CD8 T cells (TEX) are a distinct state of T cell differentiation associated with failure to clear chronic viruses and cancer. Immunotherapies such as PD-1 blockade can reinvigorate TEX cells, but reinvigoration is not durable. A major unanswered question is whether TEX cells differentiate into functional durable memory T cells (TMEM) upon antigen clearance. Here, using a mouse model, we found that upon eliminating chronic antigenic stimulation, TEX cells partially (re)acquire phenotypic and transcriptional features of TMEM cells. These ‘recovering’ TEX cells originated from the T cell factor (TCF-1+) TEX progenitor subset. Nevertheless, the recall capacity of these recovering TEX cells remained compromised as compared to TMEM cells. Chromatin-accessibility profiling revealed a failure to recover core memory epigenetic circuits and maintenance of a largely exhausted open chromatin landscape. Thus, despite some phenotypic and transcriptional recovery upon antigen clearance, exhaustion leaves durable epigenetic scars constraining future immune responses. These results support epigenetic remodeling interventions for TEX cell–targeted immunotherapies.
48
Date Added: Sep 13, 2021
Date Added: Sep 13, 2021
Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer’s disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-β (Aβ) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aβ, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aβ and activated microglia sets the pace for tau spread across Braak stages.
4
Date Added: Aug 31, 2021
Date Added: Aug 31, 2021
TCR-like antibodies tackle celiac disease Ingestion of gluten-containing food triggers the gastrointestinal symptoms of celiac disease in patients with CD4+ T cells specific for deamidated gluten peptides presented by disease-associated HLA-DQ class II MHC molecules. Frick et al. used phage display technology to screen for TCR-like antibodies specific for an immunodominant gluten peptide bound by HLA-DQ2.5. Antibody engineering optimized affinity and binding stability, yielding an improved TCR-like antibody that structurally mimicked the TCR interface with gluten peptide–MHC complexes. These TCR-like antibodies blocked activation and proliferation of gluten-responsive human CD4+ T cells both in vitro and in DQ2.5 transgenic mice. TCR-like antibodies that block immunodominant epitope recognition have potential as personalized medicine treatments for blunting gluten-activated T cell responses without compromising effector functions provided by other T cells. Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)–like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD). Phage display selection combined with secondary targeted engineering was used to obtain highly specific antibodies with picomolar affinity. The crystal structure of a Fab fragment of the lead antibody 3.C11 in complex with HLA-DQ2.5:DQ2.5-glia-α2 revealed a binding geometry and interaction mode highly similar to prototypic TCRs specific for the same complex. Assessment of CeD biopsy material confirmed disease specificity and reinforced the notion that abundant plasma cells present antigen in the inflamed CeD gut. Furthermore, 3.C11 specifically inhibited activation and proliferation of gluten-specific CD4+ T cells in vitro and in HLA-DQ2.5 humanized mice, suggesting a potential for targeted intervention without compromising systemic immunity. A human TCR-like antibody blocks gluten-dependent activation of celiac disease T cells in vitro and in HLA-DQ2.5 humanized mice. A human TCR-like antibody blocks gluten-dependent activation of celiac disease T cells in vitro and in HLA-DQ2.5 humanized mice.
4
Date Added: Sep 15, 2021
Date Added: Sep 15, 2021
Over the last decade, nanoneedle-based systems have demonstrated to be extremely useful in cell biology. They can be used as nanotools for drug delivery, biosensing or biomolecular recognition inside cells; or they can be employed to select and sort in parallel a large number of living cells. When using these nanoprobes, the most important requirement is to minimize the cell damage, reducing the forces and indentation lengths needed to penetrate the cell membrane. This is normally achieved by reducing the diameter of the nanoneedles. However, several studies have shown that nanoneedles with a flat tip display lower penetration forces and indentation lengths. In this work, we have tested different nanoneedle shapes and diameters to reduce the force and the indentation length needed to penetrate the cell membrane, demonstrating that ultra-thin and sharp nanoprobes can further reduce them, consequently minimizing the cell damage.
68
Date Added: Jul 5, 2021
Date Added: Jul 5, 2021
An indispensable feature of episodic memory is our ability to temporally piece together different elements of an experience into a coherent memory. Hippocampal “time cells” – neurons that represent temporal information – may play a critical role in this process. While these cells have been repeatedly found in rodents, it is still unclear to what extent similar temporal selectivity exists in the human hippocampus. Here we show that temporal context modulates the firing activity of human hippocampal neurons during structured temporal experiences. We recorded neuronal activity in the human brain while patients of either sex learned predictable sequences of pictures. We report that human time cells fire at successive moments in this task. Furthermore, time cells also signaled inherently changing temporal contexts during empty 10-second gap periods between trials, while participants waited for the task to resume. Finally, population activity allowed for decoding temporal epoch identity, both during sequence learning and during the gap periods. These findings suggest that human hippocampal neurons could play an essential role in temporally organizing distinct moments of an experience in episodic memory. Significance Statement: Episodic memory refers to our ability to remember the “what, where, and when” of a past experience. Representing time is an important component of this form of memory. Here, we show that neurons in the human hippocampus represent temporal information. This temporal signature was observed both when participants were actively engaged in a memory task, as well as during 10s-long gaps when they were asked to wait before performing the task. Furthermore, the activity of the population of hippocampal cells allowed for decoding one temporal epoch from another. These results suggest a robust representation of time in the human hippocampus.
16
Date Added: Aug 9, 2021
Date Added: Aug 9, 2021
Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.
16
Date Added: Jul 21, 2021
Date Added: Jul 21, 2021
Biodiversity is the variety of different forms of life on earth, including the different plants, animals, micro-organisms, the genes they contain and the ecosystem they form. It refers to genetic variation, ecosystem variation, species variation (number of species) within an area, biome or planet. Relative to the range of habitats, biotic communities and ecological processes in the biosphere, biodiversity is vital in a number of ways including promoting the aesthetic value of the natural environment, contribution to our material well-being through utilitarian values by providing food, fodder, fuel, timber and medicine. Biodiversity is the life support system. Organisms depend on it for the air to breathe, the food to eat, and the water to drink. Wetlands filter pollutants from water, trees and plants reduce global warming by absorbing carbon, and bacteria and fungi break down organic material and fertilize the soil. It has been empirically shown that native species richness is linked to the health of ecosystems, as is the quality of life for humans. The ecosystem services of biodiversity is maintained through formation and protection of soil, conservation and purification of water, maintaining hydrological cycles, regulation of biochemical cycles, absorption and breakdown of pollutants and waste materials through decomposition, determination and regulation of the natural world climate. Despite the benefits from biodiversity, today’s threats to species and ecosystems are increasing day by day with alarming rate and virtually all of them are caused by human mismanagement of biological resources often stimulated by imprudent economic policies, pollution and faulty institutions in-addition to climate change. To ensure intra and intergenerational equity, it is important to conserve biodiversity. Some of the existing measures of biodiversity conservation include; reforestation, zoological gardens, botanical gardens, national parks, biosphere reserves, germplasm banks and adoption of breeding techniques, tissue culture techniques, social forestry to minimize stress on the exploitation of forest resources.
156
Date Added: Jul 15, 2021
Date Added: Jul 15, 2021
BACKGROUND Transthyretin amyloidosis, also called ATTR amyloidosis, is a life-threatening disease characterized by progressive accumulation of misfolded transthyretin (TTR) protein in tissues, predominantly the nerves and heart. NTLA-2001 is an in vivo gene-editing therapeutic agent that is designed to treat ATTR amyloidosis by reducing the concentration of TTR in serum. It is based on the clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) system and comprises a lipid nanoparticle encapsulating messenger RNA for Cas9 protein and a single guide RNA targeting TTR. METHODS After conducting preclinical in vitro and in vivo studies, we evaluated the safety and pharmacodynamic effects of single escalating doses of NTLA-2001 in six patients with hereditary ATTR amyloidosis with polyneuropathy, three in each of the two initial dose groups (0.1 mg per kilogram and 0.3 mg per kilogram), within an ongoing phase 1 clinical study. RESULTS Preclinical studies showed durable knockout of TTR after a single dose. Serial assessments of safety during the first 28 days after infusion in patients revealed few adverse events, and those that did occur were mild in grade. Dose-dependent pharmacodynamic effects were observed. At day 28, the mean reduction from baseline in serum TTR protein concentration was 52% (range, 47 to 56) in the group that received a dose of 0.1 mg per kilogram and was 87% (range, 80 to 96) in the group that received a dose of 0.3 mg per kilogram. CONCLUSIONS In a small group of patients with hereditary ATTR amyloidosis with polyneuropathy, administration of NTLA-2001 was associated with only mild adverse events and led to decreases in serum TTR protein concentrations through targeted knockout of TTR. (Funded by Intellia Therapeutics and Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT04601051. opens in new tab.)
11
Date Added: Aug 30, 2021
Date Added: Aug 30, 2021
Highlights •A method to directly measure capillary CBF across sleep/wake is developed •Capillary CBF is highest during REM sleep •Capillary CBF is comparable between active wakefulness and non-REM sleep •A2aR signaling is crucial for the CBF upsurge during REM sleep Summary Sleep is generally viewed as a period of recovery, but how the supply of cerebral blood flow (CBF) changes across sleep/wake states has remained unclear. Here, we directly observe red blood cells (RBCs) within capillaries, where the actual substance exchange between the blood and neurons/glia occurs, by two-photon microscopy. Across multiple cortical areas, average capillary CBF is largely increased during rapid eye movement (REM) sleep, whereas it does not differ between periods of active wakefulness and non-REM sleep. Capillary RBC flow during REM sleep is further elevated following REM sleep deprivation, suggesting that capillary CBF reflects REM sleep pressure. At the molecular level, signaling via adenosine A2a receptors is crucial; in A2a-KO mice, capillary CBF upsurge during REM sleep is dampened, and effects of REM sleep pressure are abolished. These results provide evidence regarding the dynamics of capillary CBF across sleep/wake states and insights to the underlying mechanisms.
4
Date Added: Sep 6, 2021
Date Added: Sep 6, 2021
The three-dimensional organization of chromatin contributes to transcriptional control, but information about native chromatin distribution is limited. Imaging chromatin in live Drosophila larvae, with preserved nuclear volume, revealed that active and repressed chromatin separates from the nuclear interior and forms a peripheral layer underneath the nuclear lamina. This is in contrast to the current view that chromatin distributes throughout the nucleus. Furthermore, peripheral chromatin organization was observed in distinct Drosophila tissues, as well as in live human effector T lymphocytes and neutrophils. Lamin A/C up-regulation resulted in chromatin collapse toward the nuclear center and correlated with a significant reduction in the levels of active chromatin. Physical modeling suggests that binding of lamina-associated domains combined with chromatin self-attractive interactions recapitulate the experimental chromatin distribution profiles. Together, our findings reveal a novel mode of mesoscale organization of peripheral chromatin sensitive to lamina composition, which is evolutionary conserved.