Introduction/AbstractCystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts in excess of 70,000 people globally. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most significant determinant of morbidity and mortality. In this study we report results from a multi-institute consortium in which single cell transcriptomics were applied to define disease-related changes to the proximal airway of CF donors (n=19) undergoing transplantation for end-stage lung disease compared to the proximal airway of previously healthy lung donors (n=19). We found that all major airway epithelial cell types were conserved between control and CF donors. Disease-dependent differences were observed, including an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subtypes coupled with an unexpected decrease in cycling basal cells. This study developed a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.
Support the authors with ResearchCoin
Support the authors with ResearchCoin