Comparisons of visual cortex function across blind and sighted adults reveals effects of experience on human brain function. Since almost all research has been done with adults, little is known about the developmental origins of plasticity. We compared resting state functional connectivity of visual cortices of blind adults (n = 30), blindfolded sighted adults (n = 50) to a large cohort of infants (Developing Human Connectome Project, n = 475). Visual cortices of sighted adults show stronger coupling with non-visual sensory-motor networks (auditory, somatosensory/motor), than with higher-cognitive prefrontal cortices (PFC). In contrast, visual cortices of blind adults show stronger coupling with higher-cognitive PFC than with nonvisual sensory-motor networks. Are infant visual cortices functionally like those of sighted adults, with blindness leading to functional change? We find that, on the contrary that secondary visual cortices of infants are functionally more like those of blind adults: stronger coupling with PFC than with nonvisual sensory-motor networks, suggesting that visual experience modifies elements of the sighted-adult long-range functional connectivity profile. Infant primary visual cortices are in-between blind and sighted adults i.e., more balanced PFC and sensory-motor connectivity than either adult group. The lateralization of occipital-to-frontal connectivity in infants resembles the sighted adults, consistent with the idea that blindness leads to functional change. These results suggest that both vision and blindness modify functional connectivity through experience-driven (i.e., activity-dependent) plasticity.
Support the authors with ResearchCoin