Abstract Rational manipulation of hollow structure with uniform heterojunctions is evolving as an effective approach to meet the lightweight and high‐performance microwave absorption for metal‐organic frameworks (MOFs) derived absorbers. Herein, a new and controlled synergistic protecting‐etching strategy is proposed to construct shelled ZIF‐67 rhombic dodecahedral cages using tannic acid under theoretical guidance, then hollow Co@N‐doped carbon nanocages with uniform heterojunctions and hierarchical micro‐meso‐macropores are obtained via a pyrolysis process, which addresses the shortcomings of using sacrificing templates or corrosive agents. The outer Co@N‐doped carbon shell, composed of highly dispersive core‐shell heterojunctions, possesses micro‐mesopores while the inner hollow macroporous cavity endows the absorbers with lightweight characteristics. Accordingly, the maximum reflection loss is −60.6 dB at 2.4 mm and the absorption bandwidth reaches 5.1 GHz at 1.9 mm with 10 wt% filler loading, exhibiting superior specific reflection loss compared with the vast majority of previous MOFs derived absorbers. Furthermore, this synergistic protecting‐etching strategy provides inspiration for precisely creating a hollow void inside other MOFs crystals and broadens the desirable candidates for lightweight and high‐efficient microwave absorbers.
Support the authors with ResearchCoin