RH Logo

13

Optoelectronic intelligence

Published:

Apr 19, 2021

Paper Title:

Optoelectronic intelligence

13

Abstract

General intelligence involves the integration of many sources of information into a coherent, adaptive model of the world. To design and construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large neural systems capable of general intelligence, the attributes of photonics for communication and electronics for computation are complementary and interdependent. Using light for communication enables high fan-out as well as low-latency signaling across large systems with no traffic-dependent bottlenecks. For computation, the inherent nonlinearities, high speed, and low power consumption of Josephson circuits are conducive to complex neural functions. Operation at 4 K enables the use of single-photon detectors and silicon light sources, two features that lead to efficiency and economical scalability. Here, I sketch a concept for optoelectronic hardware, beginning with synaptic circuits, continuing through wafer-scale integration, and extending to systems interconnected with fiber-optic tracts, potentially at the scale of the human brain and beyond.
Comments

Table of contents

Paper PDF

Empty State
This academic paper hasn't been uploaded yet
View the paper now by clicking the link below or upload the PDF
or