RH Logo

All
My Hubs

Oncology

Trending
Today
All
Papers
Posts
Hypotheses

Sign in to discover all of the research papers you care about, live as they're published.

12
Date Added: Aug 26, 2021
Date Added: Aug 26, 2021
Cisplatin is a well-known cancer chemotherapeutic agent but how extensively long non-coding RNA (lncRNA) expression is modulated by cisplatin is unknown. It is imperative to employ a comprehensive approach to obtain a better account of cisplatin-mediated changes in the expression of lncRNAs. In this study, we used a transcriptomics approach to profile lncRNAs in cisplatin-treated HeLa cells, which resulted in identification of 10,214 differentially expressed lncRNAs, of which 2,500 were antisense lncRNAs. For functional analyses, we knocked down one of the cisplatin inducible lncRNAs, death receptor 5 antisense (DR5-AS) lncRNA, which resulted in a morphological change in HeLa cell shape without inducing any cell death. A second round of transcriptomics-based profiling revealed differential expression of genes associated with immune system, motility and cell cycle in DR5-AS knockdown HeLa cells. Cellular analyses showed that DR5-AS reduced cell proliferation and caused a cell cycle arrest at S and G2/M phases. Moreover, DR5-AS knockdown reduced the invasive capacity of HeLa cells in zebrafish xenograft model. These results suggest that cisplatin-mediated pleiotropic effects, such as reduction in cell proliferation, metastasis and cell cycle arrest, may be mediated by lncRNAs.
20
Date Added: Oct 7, 2021
Date Added: Oct 7, 2021
Purpose  Although several mechanisms have been proposed for the tumor-suppressive effect of exercise, little attention has been given to myokines even though skeletal muscle is heavily recruited during exercise resulting in myokine surges. We measured resting serum myokine levels before and after an exercise-based intervention and the effect of this serum on prostate cancer cell growth. Methods  Ten prostate cancer patients undertaking androgen deprivation therapy (ADT) (age 73.3 ± 5.6 yrs) undertook a 12-week exercise-based intervention including supervised resistance training, self-directed aerobic exercise, and protein supplementation. Body composition was assessed by dual-energy x-ray absorptiometry (DXA) and muscle strength by the one-repetition maximum (1RM) method. Fasting blood was collected at baseline and post-intervention, and serum levels of myokines: SPARC, OSM, decorin, IGF-1, and IGFBP-3 were measured. The growth of the prostate cancer cell line DU145 with baseline and post-intervention serum was measured. Results  Bodyweight (p = 0.011), fat mass (p = 0.012), and percent body fat (p = 0.033) were reduced, while percent lean mass (p = 0.001) increased as did strength (leg press, p = 0.006; chest press, p = 0.020) across the intervention. Serum OSM levels (p = 0.020) and relative serum OSM levels (p = 0.020) increased compared to baseline. A significant reduction in DU145 Cell Index (p = 0.012) and growth rate (p = 0.012) was observed after applying post-intervention serum compared to baseline serum. Conclusion  This study provides evidence for enhanced myokine expression and tumor-suppressive effects of serum from chronically exercise-trained prostate cancer patients on ADT.
3
Date Added: Sep 3, 2021
Date Added: Sep 3, 2021
Graphical Abstract Download figureOpen in new tabDownload powerpoint Currently approved inhibitors of the PD-1/PD-L1 pathway represent a major advance for the treatment of lung cancers, yet they are ineffective in a majority of patients due to lack of preexisting T-cell reactivity. Here, we show that a TLR9 agonist delivered by inhalation is able to prime T-cell responses against poorly immunogenic lung tumors and to complement the effects of PD-1 blockade. Inhaled TLR9 agonist causes profound remodeling in tumor-bearing lungs, leading to the formation of tertiary lymphoid structures adjacent to the tumors, CD8+ T-cell infiltration into the tumors, dendritic cell expansion, and antibody production. Inhalation of TLR9 agonist also increased the pool of functional PD-1lowT-bethigh effector CD8+ T cells in tumor-bearing lungs. Effector CD8+ T cells generated by inhaled TLR9 agonist treatment were licensed by PD-1 blockade to become highly functional CTLs, leading to a durable rejection of both lung tumors and tumor lesions outside the lungs. CD4+ T cells activated in response to inhaled TLR9 play a critical role in this process by controlling the proliferation, preventing exhaustion, and guiding the differentiation of optimally functional CTLs. This study characterizes a strategy to apply localized TLR9 stimulation to a tumor type not accessible for direct injection, a strategy that may expand the therapeutic potential of PD-1 blockade in non–small cell lung cancer. Significance: These findings demonstrate that local delivery of a toll-like receptor 9 agonist can change the immune content of an entire organ and enhance the efficacy of immune checkpoint inhibition. Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/17/4943/F1.large.jpg. Cancer Res; 78(17); 4943–56. ©2018 AACR.
7
Date Added: Oct 5, 2021
Date Added: Oct 5, 2021
The brain tumor glioblastoma (GBM) remains one of the most aggressive and devastating tumors despite decades of effort to find more effective treatments. A hallmark of GBM is the constitutive activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signaling pathway, which regulates cell proliferation, inflammation, migration and apoptosis. The prolyl isomerase, Pin1, has been found to bind directly to the NF-kappaB protein, p65, and cause increases in NF-kappaB promoter activity in a breast cancer model. We now present evidence that this interaction occurs in GBM and that it has important consequences on NF-kappaB signaling. We demonstrate that Pin1 levels are enhanced in primary GBM tissues compared with controls, and that this difference in Pin1 expression affects the migratory capacity of GBM-derived cells. Pin1 knockdown decreases the amount of activated, phosphorylated p65 in the nucleus, resulting in inhibition of the transcriptional program of the IL-8 gene. Through the use of microarray, we also observed changes in the expression levels of other NF-kappaB regulated genes due to Pin1 knockdown. Taken together, these data suggest that Pin1 is an important regulator of NF-kappaB in GBM, and support the notion of using Pin1 as a therapeutic target in the future.
3
Date Added: Nov 1, 2021
Date Added: Nov 1, 2021
Oral cancer is among the deadliest types of malignancy due to the late stage at which it is usually diagnosed, leaving the patient with an average five-year survival rate of less than 50%. The booming field of biosensing and point of care diagnostics can, in this regard, play a major role in the early detection of oral cancer. Saliva is gaining interest as an alternative biofluid for non-invasive diagnostics, and many salivary biomarkers of oral cancer have been proposed. While these findings are promising for the application of salivaomics tools in routine practice, studies on larger cohorts are still needed for clinical validation. This review aims to summarize the most recent development in the field of biosensing related to the detection of salivary biomarkers commonly associated with oral cancer. An introduction to oral cancer diagnosis, prognosis and treatment is given to define the clinical problem clearly, then saliva as an alternative biofluid is presented, along with its advantages, disadvantages, and collection procedures. Finally, a brief paragraph on the most promising salivary biomarkers introduces the sensing technologies commonly exploited to detect oral cancer markers in saliva. Hence this review provides a comprehensive overview of both the clinical and technological advantages and challenges associated with oral cancer detection through salivary biomarkers.
18
Date Added: Jul 19, 2021
Date Added: Jul 19, 2021
Strong and durable anticancer immune responses are associated with the generation of activated cancer-specific T cells in the draining lymph nodes. However, cancer cells can colonize lymph nodes and drive tumour progression. Here, we show that lymphocytes fail to penetrate metastatic lesions in lymph nodes. In tissue from patients with breast, colon, and head and neck cancers, as well as in mice with spontaneously developing breast-cancer lymph-node metastases, we found that lymphocyte exclusion from nodal lesions is associated with the presence of solid stress caused by lesion growth, that solid stress induces reductions in the number of functional high endothelial venules in the nodes, and that relieving solid stress in the mice increased the presence of lymphocytes in lymph-node lesions by about 15-fold. Solid-stress-mediated impairment of lymphocyte infiltration into lymph-node metastases suggests a therapeutic route for overcoming T-cell exclusion during immunotherapy.
2
Date Added: Sep 14, 2021
Date Added: Sep 14, 2021
Many DNA-hypermethylated cancer genes are occupied by the Polycomb (PcG) repressor complex in embryonic stem cells (ESCs). Their prevalence in the full spectrum of cancers, the exact context of chromatin involved, and their status in adult cell renewal systems are unknown. Using a genome-wide analysis, we demonstrate that ∼75% of hypermethylated genes are marked by PcG in the context of bivalent chromatin in both ESCs and adult stem/progenitor cells. A large number of these genes are key developmental regulators, and a subset, which we call the “DNA hypermethylation module,” comprises a portion of the PcG target genes that are down-regulated in cancer. Genes with bivalent chromatin have a low, poised gene transcription state that has been shown to maintain stemness and self-renewal in normal stem cells. However, when DNA-hypermethylated in tumors, we find that these genes are further repressed. We also show that the methylation status of these genes can cluster important subtypes of colon and breast cancers. By evaluating the subsets of genes that are methylated in different cancers with consideration of their chromatin status in ESCs, we provide evidence that DNA hypermethylation preferentially targets the subset of PcG genes that are developmental regulators, and this may contribute to the stem-like state of cancer. Additionally, the capacity for global methylation profiling to cluster tumors by phenotype may have important implications for further refining tumor behavior patterns that may ultimately aid therapeutic interventions.
3
Date Added: Aug 4, 2021
Date Added: Aug 4, 2021
B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T-cell therapy is an emerging treatment option for multiple myeloma. The aim of this systematic review and meta-analysis was to determine its safety and clinical activity and to identify factors influencing these outcomes.
42
Date Added: Jul 20, 2021
Date Added: Jul 20, 2021
Family health history (FHx) is an effective tool for identifying patients at risk of hereditary cancer. Hereditary cancer clinical practice guidelines (CPG) contain criteria used to evaluate FHx and to make recommendations for genetic consultation. Comparing different CPGs used to evaluate a common set of FHx provides insight into how well the CPGs perform, the extent of agreement across guidelines, and how well they identify patients who should consider a cancer genetic consultation.