RH Logo

All
My Hubs

Internet Of Things

Trending
Today
All
Papers
Posts
Hypotheses

Sign in to discover all of the research papers you care about, live as they're published.

3
Date Added: Aug 6, 2021
Date Added: Aug 6, 2021
This article reviewed the state-of-the-art applications of the Internet of things (IoT) technology applied in homes for making them smart, automated, and digitalized in many respects. The literature presented various applications, systems, or methods and reported the results of using IoT, artificial intelligence (AI), and geographic information system (GIS) at homes. Because the technology has been advancing and users are experiencing IoT boom for smart built environment applications, especially smart homes and smart energy systems, it is necessary to identify the gaps, relation between current methods, and provide a coherent instruction of the whole process of designing smart homes. This article reviewed relevant papers within databases, such as Scopus, including journal papers published in between 2010 and 2019. These papers were then analyzed in terms of bibliography and content to identify more related systems, practices, and contributors. A designed systematic review method was used to identify and select the relevant papers, which were then reviewed for their content by means of coding. The presented systematic critical review focuses on systems developed and technologies used for smart homes. The main question is ”What has been learned from a decade trailing smart system developments in different fields?”. We found that there is a considerable gap in the integration of AI and IoT and the use of geospatial data in smart home development. It was also found that there is a large gap in the literature in terms of limited integrated systems for energy efficiency and aged care system development. This article would enable researchers and professionals to fully understand those gaps in IoT-based environments and suggest ways to fill the gaps while designing smart homes where users have a higher level of thermal comfort while saving energy and greenhouse gas emissions. This article also raised new challenging questions on how IoT and existing developed systems could be improved and be further developed to address other issues of energy saving, which can steer the research direction to full smart systems. This would significantly help to design fully automated assistive systems to improve quality of life and decrease energy consumption.
2
Date Added: Aug 27, 2021
Date Added: Aug 27, 2021
Smart city is a collective term for technologies and concepts that are directed toward making cities efficient, technologically more advanced, greener and more socially inclusive. These concepts include technical, economic and social innovations. This term has been tossed around by various actors in politics, business, administration and urban planning since the 2000s to establish tech-based changes and innovations in urban areas. The idea of the smart city is used in conjunction with the utilization of digital technologies and at the same time represents a reaction to the economic, social and political challenges that post-industrial societies are confronted with at the start of the new millennium. The key focus is on dealing with challenges faced by urban society, such as environmental pollution, demographic change, population growth, healthcare, the financial crisis or scarcity of resources. In a broader sense, the term also includes non-technical innovations that make urban life more sustainable. So far, the idea of using IoT-based sensor networks for healthcare applications is a promising one with the potential of minimizing inefficiencies in the existing infrastructure. A machine learning approach is key to successful implementation of the IoT-powered wireless sensor networks for this purpose since there is large amount of data to be handled intelligently. Throughout this paper, it will be discussed in detail how AI-powered IoT and WSNs are applied in the healthcare sector. This research will be a baseline study for understanding the role of the IoT in smart cities, in particular in the healthcare sector, for future research works.
2
Date Added: Sep 18, 2021
Date Added: Sep 18, 2021
Creatinine has become an important indicator for the early detection of uremia. However, due to the disadvantages of external power supply and large volume, some commercial devices for detecting creatinine concentration have lost a lot of popularity in everyday life. This paper describes the development of a self-powered biosensor for detecting creatinine in sweat. The biosensor can detect human creatinine levels in real time without the need for an external power source, providing information about the body’s overall health. The piezoelectric output voltage of creatininase/creatinase/sarcosine oxidase-modified ZnO nanowires (NWs) is significantly dependent on the creatinine concentration due to the coupling effect of the piezoelectric effect and enzymatic reaction (piezo-enzymatic-reaction effect), which can be regarded as both electrical energy and biosensing signal. Our results can be used for the detection of creatinine levels in the human body and have great potential in the prediction of related diseases.