RH Logo

Sign in to discover all of the research papers you care about, live as they're published.

3
Date Added: Jan 11, 2022
Date Added: Jan 11, 2022
This paper explores how the Internet of Things and blockchain technology can benefit shared economy applications. The focus of this research is unders…
Paper
3
Date Added: Jan 11, 2022
Date Added: Jan 11, 2022
One of the buzzwords in the Information Technology is Internet of Things (IoT). The future is Internet of Things, which will transform the real world objects into intelligent virtual objects. The IoT aims to unify everything in our world under a common infrastructure, giving us not only control of things around us, but also keeping us informed of the state of the things. In Light of this, present study addresses IoT concepts through systematic review of scholarly research papers, corporate white papers, professional discussions with experts and online databases. Moreover this research article focuses on definitions, geneses, basic requirements, characteristics and aliases of Internet of Things. The main objective of this paper is to provide an overview of Internet of Things, architectures, and vital technologies and their usages in our daily life. However, this manuscript will give good comprehension for the new researchers, who want to do research in this field of Internet of Things (Technological GOD) and facilitate knowledge accumulation in efficiently.
Paper
4
Date Added: Jan 13, 2022
Date Added: Jan 13, 2022
By 2020, more than 50 billion devices will be connected through radio communications. In conjunction with the rapid growth of the Internet of Things (…
Paper
3
Date Added: Jan 18, 2022
Date Added: Jan 18, 2022
To enhance the coverage and transmission reliability, repetitions adopted by Narrowband Internet of Things (NB-IoT) allow repeating transmissions several times. However, this results in a waste of radio resources when the signal strength is high. In addition, in low signal quality, the selection of a higher modulation and coding scheme (MCS) level leads to a huge packet loss in the network. Moreover, the number of physical resource blocks (PRBs) per-user needs to be chosen dynamically, such that the utilization of radio resources can be improved on per-user basis. Therefore, in NB-IoT systems, dynamic adaptation of repetitions, MCS, and radio resources, known as auto link-configuration, is crucial. Accordingly, in this paper, we propose SmartCon which is a Generative Adversarial Network (GAN)-based deep learning approach for auto link-configuration during uplink or downlink scheduling, such that the packet loss rate is significantly reduced in NB-IoT networks. For the training purpose of the GAN, we use a Multi-Armed Bandit (MAB)-based reinforcement learning mechanism that intelligently tunes its output depending on the present network condition. The performance of SmartCon is thoroughly evaluated through simulations where it is shown to significantly improve the performance of NB-IoT systems compared to baseline schemes.
3
Date Added: Jan 18, 2022
Date Added: Jan 18, 2022
In the current connected world - Websites, Mobile Apps, IoT Devices collect a large volume of users' personally identifiable activity data. These collected data is used for varied purposes of analytics, marketing, personalization of services, etc. Data is assimilated through site cookies, tracking device IDs, embedded JavaScript, Pixels, etc. to name a few. Many of these tracking and usage of collected data happens behind the scenes and is not apparent to an average user. Consequently, many Countries and Regions have formulated legislations (e.g., GDPR, EU) - that allow users to be able to control their personal data, be informed and consent to its processing in a comprehensible and user-friendly manner. This paper proposes a protocol and a platform based on Blockchain Technology that enables the transparent processing of personal data throughout its lifecycle from capture, lineage to redaction. The solution intends to help service multiple stakeholders from individual end-users to Data Controllers and Privacy Officers. It intends to offer a holistic and unambiguous view of how and when the data points are captured, accessed, and processed. The framework also envisages how different access control policies might be created and enforced through a public blockchain including real time alerts for privacy data breach.
3
Date Added: Jan 18, 2022
Date Added: Jan 18, 2022
Currently, most social robots interact with their surroundings and humans through sensors that are integral parts of the robots, which limits the usability of the sensors, human-robot interaction, and interchangeability. A wearable sensor garment that fits many robots is needed in many applications. This article presents an affordable wearable sensor vest, and an open-source software architecture with the Internet of Things (IoT) for social humanoid robots. The vest consists of touch, temperature, gesture, distance, vision sensors, and a wireless communication module. The IoT feature allows the robot to interact with humans locally and over the Internet. The designed architecture works for any social robot that has a general-purpose graphics processing unit (GPGPU), I2C/SPI buses, Internet connection, and the Robotics Operating System (ROS). The modular design of this architecture enables developers to easily add/remove/update complex behaviors. The proposed software architecture provides IoT technology, GPGPU nodes, I2C and SPI bus mangers, audio-visual interaction nodes (speech to text, text to speech, and image understanding), and isolation between behavior nodes and other nodes. The proposed IoT solution consists of related nodes in the robot, a RESTful web service, and user interfaces. We used the HTTP protocol as a means of two-way communication with the social robot over the Internet. Developers can easily edit or add nodes in C, C++, and Python programming languages. Our architecture can be used for designing more sophisticated behaviors for social humanoid robots.
3
Date Added: Jan 18, 2022
Date Added: Jan 18, 2022
This paper proposes a research model with five constructs, i.e., IoT awareness, users’ IoT privacy knowledge, users’ IoT security knowledge, users’ Io…
Paper
62
Date Added: Jan 6, 2022
Date Added: Jan 6, 2022
Passive acoustic monitoring (PAM) involves recording the sounds of animals and environments for research and conservation. PAM is used in a range of contexts across terrestrial, marine and freshwater environments. However, financial constraints limit applications within aquatic environments; these costs include the high cost of submersible acoustic recorders. We quantify this financial constraint using a systematic literature review of all ecoacoustic studies published in 2020, demonstrating that commercially available autonomous underwater recording units are, on average, five times more expensive than their terrestrial equivalents. This pattern is more extreme at the low end of the price range; the cheapest available aquatic autonomous units are over 40 times more expensive than their terrestrial counterparts. Following this, we test a prototype low-cost, low-specification aquatic recorder called the ‘HydroMoth’: this device is a modified version of a widely used terrestrial recorder (AudioMoth), altered to include a waterproof case and customisable gain settings suitable for a range of aquatic applications. We test the performance of the HydroMoth in both aquaria and field conditions, recording artificial and natural sounds, and comparing outputs with identical recordings taken with commercially available hydrophones. Although the signal-to-noise ratio and the recording quality of HydroMoths are lower than commercially available hydrophones, the recordings with HydroMoths still allow for the identification of different fish and marine mammal species, as well as the calculation of ecoacoustic indices for ecosystem monitoring. Finally, we outline the potential applications of low-cost, low-specification underwater sound recorders for bioacoustic studies, discuss their likely limitations, and present important considerations of which users should be aware. Several performance limitations and a lack of professional technical support mean that low-cost devices cannot meet the requirements of all PAM applications. Despite these limitations, however, HydroMoth facilitates underwater recording at a fraction of the price of existing hydrophones, creating exciting potential for diverse involvement in aquatic bioacoustics worldwide.
4
Date Added: Jan 10, 2022
Date Added: Jan 10, 2022
The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully designed with respect to the city infrastructure and utilization of resources. Recently, the idea of `smart' environment, which takes advantage of the infrastructure in order to enable better performance of wireless networks, has been proposed. This idea is aligned with the recent advances in design of reconfigurable intelligent surfaces (RISs), which are planar structures with the capability to reflect impinging electromagnetic waves toward preferred directions. Thus, RISs are expected to provide the necessary flexibility for the design of the `smart' communication environment, which can be optimally shaped to enable cost- and energy-efficient signal transmissions where needed. Upon deployment of RISs, the ecosystem of the Smart Cities would become even more controllable and adaptable, which would subsequently ease the implementation of future communication networks in urban areas and boost the interconnection among private households and public services. In this article, we provide our vision on RIS integration into future Smart Cities by pointing out some forward-looking new application scenarios and use cases and by highlighting the potential advantages of RIS deployment. To this end, we identify the most promising research directions and opportunities. The respective design problems are formulated mathematically. Moreover, we focus the discussion on the key enabling aspects for RIS-assisted Smart Cities, which require substantial research efforts such as pilot decontamination, precoding for large multiuser networks, distributed operation and control of RISs. These contributions pave the road to a systematic design of RIS-assisted communication networks for Smart Cities in the years to come.
Paper
2
Date Added: Jan 10, 2022
Date Added: Jan 10, 2022
The fifth generation (5G) of wireless networks promises to meet the stringent requirements of vehicular use cases that cannot be supported by previous technologies. However, the stakeholders of the automotive industry (e.g., car manufacturers and road operators) are still skeptical about the capability of the telecom industry to take the lead in a market that has been dominated by dedicated intelligent transport systems (ITS) deployments. In this context, this paper constructs a framework where the potential of 5G to support different vehicular use cases is thoroughly examined under a common format from both the technical and business perspectives. From the technical standpoint, a storyboard description is developed to explain when and how different use case scenarios may come into play (i.e., pre-conditions, service flows and post-conditions). Then, a methodology to trial each scenario is developed including a functional architecture, an analysis of the technical requirements and a set of target test cases. From the business viewpoint, an initial analysis of the qualitative value perspectives is conducted considering the stakeholders, identifying the pain points of the existing solutions, and highlighting the added value of 5G in overcoming them. The future evolution of the considered use cases is finally discussed.
Paper
Load More