RH Logo

Sign in to discover all of the research papers you care about, live as they're published.

4
Date Added: Jan 27, 2022
Date Added: Jan 27, 2022
Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.
Paper
5
Date Added: Jan 26, 2022
Date Added: Jan 26, 2022
Recently, there has been a shift from static stretching (SS) or proprioceptive neuromuscular facilitation (PNF) stretching within a warm-up to a greater emphasis on dynamic stretching (DS). The objective of this review was to compare the effects of SS, DS, and PNF on performance, range of motion (ROM), and injury prevention. The data indicated that SS- (–3.7%), DS- (+1.3%), and PNF- (–4.4%) induced performance changes were small to moderate with testing performed immediately after stretching, possibly because of reduced muscle activation after SS and PNF. A dose–response relationship illustrated greater performance deficits with ≥60 s (–4.6%) than with <60 s (–1.1%) SS per muscle group. Conversely, SS demonstrated a moderate (2.2%) performance benefit at longer muscle lengths. Testing was performed on average 3–5 min after stretching, and most studies did not include poststretching dynamic activities; when these activities were included, no clear performance effect was observed. DS produced small-to-moderate performance improvements when completed within minutes of physical activity. SS and PNF stretching had no clear effect on all-cause or overuse injuries; no data are available for DS. All forms of training induced ROM improvements, typically lasting <30 min. Changes may result from acute reductions in muscle and tendon stiffness or from neural adaptations causing an improved stretch tolerance. Considering the small-to-moderate changes immediately after stretching and the study limitations, stretching within a warm-up that includes additional poststretching dynamic activity is recommended for reducing muscle injuries and increasing joint ROM with inconsequential effects on subsequent athletic performance.
Paper
4
Date Added: Jan 14, 2022
Date Added: Jan 14, 2022
Strength and flexibility are common components of exercise programmes; however, it is not clear how best to include both of these elements in a single training programme. It is common practice among athletes, coaches and recreational exercisers to perform a stretching routine before a strength training session. Stretching exercises are regularly recommended, even in many textbooks, with the claimed purpose of preventing injury and muscle soreness, or even enhancing performance. However, as highlighted in recent review articles, this recommendation lacks scientific evidence. Thus, the purpose of the present review is to determine the acute and chronic effects of stretching on strength performance, together with the underlying mechanisms. Although most studies have found acute decreases in strength following stretching, and that such decreases seem to be more prominent the longer the stretching protocol, the number of exercises and sets, and the duration of each set have, in general, exceeded the ranges normally recommended in the literature. Consequently, the duration of the stimuli were excessively long compared with common practice, thus making evident the need for further studies. In addition, when recommending flexibility exercises, one should consider other underlying issues, such as the safety of the participants, possible increases in injury risks and the unnecessary time expenditure. Many mechanisms underlying stretching exercises still demand investigation so that links between the observed effects, their causes and the consequences may be constructed.
3
Date Added: Dec 30, 2021
Date Added: Dec 30, 2021
"Resistance training can be defined as the act of repeated voluntary muscle contractions against a resistance greater than those normally encountered in activities of daily living. Training of this kind is known to increase strength via adaptations in both the muscular and nervous systems. While the physiology of muscular adaptations following resistance training is well understood, the nature of neural adaptations is less clear. One piece of indirect evidence to indicate that neural adaptations accompany resistance training comes from the phenomenon of ‘cross education’, which describes the strength gain in the opposite, untrained limb following unilateral resistance training. Since its discovery in 1894, subsequent studies have confirmed the existence of cross education in contexts involving voluntary, imagined and electrically stimulated contractions. The cross education effect is specific to the contralateral homologous muscle but not restricted to particular muscle groups, ages or genders. A recent meta-analysis determined that the magnitude of cross education is ≈7.8% of the initial strength of the untrained limb. While many features of cross education have been established, the underlying mechanisms are unknown..."
3
Date Added: Jan 7, 2022
Date Added: Jan 7, 2022
Altitude training and respiratory muscle training (RMT) have been reported to improve performance in elite and well-trained athletes. Several devices (altitude and RMT) have been developed to help athletes gain the competitive edge. The Elevation Training Mask 2.0 (ETM) purportedly simulates altitude training and has been suggested to increase aerobic capacity (VO2max), endurance performance, and lung function. Twenty four moderately trained subjects completed 6 weeks of high intensity cycle ergometer training. Subjects were randomized into a mask (n = 12) or control (n = 12) group. Pre and post training tests included VO2max, pulmonary function, maximal inspiration pressure, hemoglobin and hematocrit. No significant differences were found in pulmonary function or hematological variables between or within groups. There was a significant improvement in VO2max and PPO in both the control (13.5% and 9.9%) and mask (16.5% and 13.6%) groups. There was no difference in the magnitude of improvement between groups. Only the mask group had significant improvements in ventilatory threshold (VT) (13.9%), power output (PO) at VT (19.3%), respiratory compensation threshold (RCT) (10.2%), and PO at RCT (16.4%) from pre to post-testing. The trends for improvements in VT and PO at VT between groups were similar to improvements in RCT and PO at RCT, but did not reach statistical significance (VT p = 0.06, PO at VT p = 0.170). Wearing the ETM while participating in a 6-week high-intensity cycle ergometer training program does not appear to act as a simulator of altitude, but more like a respiratory muscle training device. Wearing the ETM may improve specific markers of endurance performance beyond the improvements seen with interval training alone.
Paper
3
Date Added: Jan 26, 2022
Date Added: Jan 26, 2022
Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle-tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.
Paper
4
Date Added: Jan 16, 2022
This is more a post to discuss the uses for static vs dynamic stretching. When to use? How to use? what's the most recent research saying? different per sport/position? Best time duration for stretch? How do you use stretching clinically? Let us gather the evidence and discuss.
2
Date Added: Jan 16, 2022
Date Added: Jan 16, 2022
Background: Dorsiflexion range of motion restriction has been associated with patellar tendinopathy, but the mechanisms of how dorsiflexion restriction could contribute to knee overload remain unknown. Hypothesis: Peak ankle dorsiflexion and ankle dorsiflexion excursion are negatively associated with peak vertical ground-reaction force (vGRF) and loading rate, and with peak patellar tendon force and loading rate, and positively associated with peak ankle plantar flexor moment. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: Kinematic and kinetic data of 26 healthy recreational jumping athletes were measured during a single-leg drop vertical jump. Pearson’s correlation coefficients were calculated to establish the association between peak ankle dorsiflexion and ankle dorsiflexion excursion with peak vGRF and vGRF loading rate, with peak patellar tendon force and patellar tendon force loading rate, and with peak ankle plantar flexor moment. Results: Ankle dorsiflexion excursion negatively correlated with peak vGRF loading rate ( r = −0.49; P = 0.011) and positively correlated with peak ankle flexor plantar moment ( r = 0.52; P = 0.006). In addition, there was a positive correlation between peak ankle dorsiflexion and peak vGRF ( r = 0.39; P = 0.05). Conclusion: Ankle kinematics are associated with vGRF loading rate, ankle flexor plantar moment and peak vGRF influencing knee loads, but no association was observed between ankle kinematics and patellar tendon loads. Clinical Relevance: These results suggest that increasing ankle dorsiflexion excursion may be an important strategy to reduce lower limb loads during landings but should not be viewed as the main factor for reducing patellar tendon force.
2
Date Added: Jan 2, 2022
Date Added: Jan 2, 2022
Obesity and female sex are independent risk factors for knee osteoarthritis and also influence gait mechanics. However, the interaction between obesit…
Load More