RH Logo
Hubs
About
Live
Leaderboard

My Hubs
All
ResearchHub Feeds
My Hubs
All

Trending Users

Author Profile Avatar
kusuma .
Author Profile Avatar
Patrick Joyce
Author Profile Avatar
Chukwuma Chidera
Author Profile Avatar
Titus Osikhiana Ogahbrai
Author Profile Avatar
Anton Lebed
Author Profile Avatar
Kayla Burris
Author Profile Avatar
Will McBurnie
Author Profile Avatar
Cullyn Newman
Author Profile Avatar
Dean Sherzai
Author Profile Avatar
Brian Armstrong

Trending Papers in Neuroscience

Trending
Today
Trending
Today

Sign in to discover all of the research papers you care about, live as they're published.

53
Published: Apr 15, 2021
Published: Apr 15, 2021
Subject motion can introduce noise into neuroimaging data and result in biased estimations of brain structure. In-scanner motion can compromise data quality in a number of ways and varies widely across developmental and clinical populations. However, quantification of structural image quality is often limited to proxy or indirect measures gathered from functional scans; this may be missing true differences related to these potential artifacts. In this study, we take advantage of novel informatic tools, the CAT12 toolbox, to more directly measure image quality from T1-weighted images to understand if these measures of image quality: (1) relate to rigorous quality-control checks visually completed by human raters; (2) are associated with sociodemographic variables of interest; (3) influence regional estimates of cortical surface area, cortical thickness, and subcortical volumes from the commonly used Freesurfer tool suite. We leverage public-access data that includes a community-based sample of children and adolescents, spanning a large age-range (N = 388; ages 5–21). Interestingly, even after visually inspecting our data, we find image quality significantly impacts derived cortical surface area, cortical thickness, and subcortical volumes from multiple regions across the brain (~ 23.4% of all areas investigated). We believe these results are important for research groups completing structural MRI studies using Freesurfer or other morphometric tools. As such, future studies should consider using measures of image quality to minimize the influence of this potential confound in group comparisons or studies focused on individual differences.
Slide 1 of 1
  • Paper Preview Page 1
21
Published: Feb 9, 2021
Published: Feb 9, 2021
Objective To investigate the role of salivary small non-coding RNAs (sncRNAs) in the diagnosis of sport-related concussion. Methods Saliva was obtained from male professional players in the top two tiers of England’s elite rugby union competition across two seasons (2017–2019). Samples were collected preseason from 1028 players, and during standardised head injury assessments (HIAs) at three time points (in-game, post-game, and 36–48 hours post-game) from 156 of these. Samples were also collected from controls (102 uninjured players and 66 players sustaining a musculoskeletal injury). Diagnostic sncRNAs were identified with next generation sequencing and validated using quantitative PCR in 702 samples. A predictive logistic regression model was built on 2017–2018 data (training dataset) and prospectively validated the following season (test dataset). Results The HIA process confirmed concussion in 106 players (HIA+) and excluded this in 50 (HIA−). 32 sncRNAs were significantly differentially expressed across these two groups, with let-7f-5p showing the highest area under the curve (AUC) at 36–48 hours. Additionally, a combined panel of 14 sncRNAs (let-7a-5p, miR-143-3p, miR-103a-3p, miR-34b-3p, RNU6-7, RNU6-45, Snora57, snoU13.120, tRNA18Arg-CCT, U6-168, U6-428, U6-1249, Uco22cjg1,YRNA_255) could differentiate concussed subjects from all other groups, including players who were HIA− and controls, immediately after the game (AUC 0.91, 95% CI 0.81 to 1) and 36–48 hours later (AUC 0.94, 95% CI 0.86 to 1). When prospectively tested, the panel confirmed high predictive accuracy (AUC 0.96, 95% CI 0.92 to 1 post-game and AUC 0.93, 95% CI 0.86 to 1 at 36–48 hours). Conclusions SCRUM, a large prospective observational study of non-invasive concussion biomarkers, has identified unique signatures of concussion in saliva of male athletes diagnosed with concussion.
48
Published: Apr 20, 2021
Published: Apr 20, 2021
Coffee is the most widely consumed source of caffeine worldwide, partly due to the psychoactive effects of this methylxanthine. Interestingly, the effects of its chronic consumption on the brain’s intrinsic functional networks are still largely unknown. This study provides the first extended characterization of the effects of chronic coffee consumption on human brain networks. Subjects were recruited and divided into two groups: habitual coffee drinkers (CD) and non-coffee drinkers (NCD). Resting-state functional magnetic resonance imaging (fMRI) was acquired in these volunteers who were also assessed regarding stress, anxiety, and depression scores. In the neuroimaging evaluation, the CD group showed decreased functional connectivity in the somatosensory and limbic networks during resting state as assessed with independent component analysis. The CD group also showed decreased functional connectivity in a network comprising subcortical and posterior brain regions associated with somatosensory, motor, and emotional processing as assessed with network-based statistics; moreover, CD displayed longer lifetime of a functional network involving subcortical regions, the visual network and the cerebellum. Importantly, all these differences were dependent on the frequency of caffeine consumption, and were reproduced after NCD drank coffee. CD showed higher stress levels than NCD, and although no other group effects were observed in this psychological assessment, increased frequency of caffeine consumption was also associated with increased anxiety in males. In conclusion, higher consumption of coffee and caffeinated products has an impact in brain functional connectivity at rest with implications in emotionality, alertness, and readiness to action.
Slide 1 of 1
  • Paper Preview Page 1
1
Published: Aug 1, 2021
Authors: Zoë Little, Daniel Jenkins, Tirta Susilo
Published: Aug 1, 2021
Authors: Zoë Little, Daniel Jenkins, Tirta Susilo
Load More Papers