RH Logo

All
My Hubs

Optics

Trending
Today
All
Papers
Posts

Sign in to discover all of the research papers you care about, live as they're published.

3
Date Added: Sep 15, 2021
Date Added: Sep 15, 2021
Second-harmonic generation is of paramount importance in several fields of science and technology, including frequency conversion, self-referencing of frequency combs, nonlinear spectroscopy and pulse characterization. Advanced functionalities are enabled by modulation of the harmonic generation efficiency, which can be achieved with electrical or all-optical triggers. Electrical control of the harmonic generation efficiency offers large modulation depth at the cost of low switching speed, by contrast to all-optical nonlinear devices, which provide high speed and low modulation depth. Here we demonstrate all-optical modulation of second-harmonic generation in MoS2 with a modulation depth of close to 100% and speed limited only by the fundamental pulse duration. This result arises from a combination of D3h crystal symmetry and the deep subwavelength thickness of the sample, it can therefore be extended to the whole family of transition metal dichalcogenides to provide great flexibility in the design of advanced nonlinear optical devices such as high-speed integrated frequency converters, broadband autocorrelators for ultrashort pulse characterization, and tunable nanoscale holograms.
3
Date Added: Aug 9, 2021
Date Added: Aug 9, 2021
Subwavelength electromagnetic field localization has been central to photonic research in the last decade, allowing us to enhance sensing capabilities as well as increase the coupling between photons and material excitations. The strong and ultrastrong light–matter coupling regime in the terahertz range using split-ring resonators coupled to magnetoplasmons has been widely investigated, achieving successive world records for the largest light–matter coupling ever achieved. Ever shrinking resonators have allowed us to approach the regime of few-electron strong coupling, in which single-dipole properties can be modified by the vacuum field. Here, we demonstrate, theoretically and experimentally, the existence of a limit to the possibility of arbitrarily increasing electromagnetic confinement in polaritonic systems. Strongly subwavelength fields can excite a continuum of high-momenta propagative magnetoplasmons. This leads to peculiar nonlocal polaritonic effects, as certain polaritonic features disappear and the system enters the regime of discrete-to-continuum strong coupling.
54
Date Added: Aug 9, 2021
Date Added: Aug 9, 2021
In quantum-confined semiconductor nanostructures, electrons exhibit distinctive behavior compared with that in bulk solids. This enables the design of materials with tunable chemical, physical, electrical, and optical properties. Zero-dimensional semiconductor quantum dots (QDs) offer strong light absorption and bright narrowband emission across the visible and infrared wavelengths and have been engineered to exhibit optical gain and lasing. These properties are of interest for imaging, solar energy harvesting, displays, and communications. Here, we offer an overview of advances in the synthesis and understanding of QD nanomaterials, with a focus on colloidal QDs, and discuss their prospects in technologies such as displays and lighting, lasers, sensing, electronics, solar energy conversion, photocatalysis, and quantum information.
8
Date Added: Jul 23, 2021
Date Added: Jul 23, 2021
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow d bands are at the origin of remarkable properties such as the opening of Mott gap, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO3 with V4+ in a 3d1 electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, the authors focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO3 thin films discloses the limitations of the simplest picture of e–e correlations in a Fermi liquid (FL); instead, it is shown that the quasi-2D topology of the Fermi surface (FS) and a strong electron–phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic, and transport data. The picture that emerges is not restricted to SrVO3 but can be shared with other 3d and 4d metallic oxides.
6
Date Added: Jul 21, 2021
Date Added: Jul 21, 2021
High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.
6
Date Added: Jul 14, 2021
Date Added: Jul 14, 2021
Recent years have seen a rapid expansion of research into photonic and plasmonic nanowire waveguides for both fundamental studies and technological applications, because of their ability to propagate and process optical signals in tightly confined light fields with high speed and low power, space and material requirements. This comprehensive review summarizes recent advances in the fabrication, characterization and applications of both photonic and plasmonic NW waveguides, with a special focus on the comparative discussion of their differences and similarities in mechanisms and properties, strengths and limitations in performance, and how they can work together in hybrid devices with performances and applications that neither can achieve individually. We also provide an outlook on the future opportunities and directions in this exciting field.
5
Date Added: Jul 12, 2021
Date Added: Jul 12, 2021
Optical waveguides are widely used in integrated photonic circuitry for a variety of applications such as on-chip lasers, filters, light sources, amplifiers. Such waveguides suffer from high reflection which harms the transparency of the device and, therefore, its efficiency. In article number 2100130, Alina Karabchevsky and her team from the School of ECE at Ben-Gurion University report a new anti-reflection metamaterial, inspired by Jellyfish anti-reflective eyes, engraved on a waveguide facet experiencing broadband behavior that enhances the waveguide transparency.
23
Date Added: May 1, 2021
Date Added: May 1, 2021
It is well known that waves with frequencies within the forbidden gap inside a crystal are transported only over a limited distance—the Bragg length—before being reflected by Bragg interference. Here, we demonstrate how to send waves much deeper into crystals in an exemplary study of light in two-dimensional silicon photonic crystals. By spatially shaping the wave fronts, the internal energy density—probed via the laterally scattered intensity—is enhanced at a tunable distance away from the front surface. The intensity is up to 100× enhanced compared to random wave fronts, and extends as far as 8× the Bragg length, which agrees with an extended mesoscopic model. We thus report a novel control knob for mesoscopic wave transport that pertains to any kind of waves.
13
Date Added: Apr 22, 2021
Date Added: Apr 22, 2021
General intelligence involves the integration of many sources of information into a coherent, adaptive model of the world. To design and construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large neural systems capable of general intelligence, the attributes of photonics for communication and electronics for computation are complementary and interdependent. Using light for communication enables high fan-out as well as low-latency signaling across large systems with no traffic-dependent bottlenecks. For computation, the inherent nonlinearities, high speed, and low power consumption of Josephson circuits are conducive to complex neural functions. Operation at 4 K enables the use of single-photon detectors and silicon light sources, two features that lead to efficiency and economical scalability. Here, I sketch a concept for optoelectronic hardware, beginning with synaptic circuits, continuing through wafer-scale integration, and extending to systems interconnected with fiber-optic tracts, potentially at the scale of the human brain and beyond.
10
Date Added: Mar 20, 2021
Date Added: Mar 20, 2021
Electrochromic coatings are promising for applications in smart windows or energy-efficient optical displays. However, classical inorganic electrochromic materials such as WO3 suffer from low coloration efficiency and slow switching speed. We have developed highly efficient and fast-switching electrochromic thin films based on fully organic, porous covalent organic frameworks (COFs). The low band gap COFs have strong vis–NIR absorption bands in the neutral state, which shift significantly upon electrochemical oxidation. Fully reversible absorption changes by close to 3 OD can be triggered at low operating voltages and low charge per unit area. Our champion material reaches an electrochromic coloration efficiency of 858 cm2 C–1 at 880 nm and retains >95% of its electrochromic response over 100 oxidation/reduction cycles. Furthermore, the electrochromic switching is extremely fast with response times below 0.4 s for the oxidation and around 0.2 s for the reduction, outperforming previous COFs by at least an order of magnitude and rendering these materials some of the fastest-switching frameworks to date. This combination of high coloration efficiency and very fast switching reveals intriguing opportunities for applications of porous organic electrochromic materials.