RH Logo

All
My Hubs

Pathology

Trending
Today
All
Papers
Posts
Hypotheses

Sign in to discover all of the research papers you care about, live as they're published.

13
Date Added: Nov 23, 2021
Date Added: Nov 23, 2021
Importance Influenza has been associated with the risk of developing Parkinson disease, but the association is controversial. Objective To examine whether prior influenza and other infections are associated with Parkinson disease more than 10 years after infection. Design, Setting, and Participants This case-control study used data from 1977 to 2016 from the Danish National Patient Registry. All individuals with Parkinson disease, excluding those with drug-induced parkinsonism, were included and matched to 5 population controls on sex, age, and date of Parkinson diagnosis. Data were analyzed from December 2019 to September 2021. Exposures Infections were ascertained between 1977 and 2016 and categorized by time from infection to Parkinson disease diagnosis. To increase specificity of influenza diagnoses, influenza exposure was restricted to months of peak influenza activity. Main Outcomes and Measures Parkinson disease diagnoses were identified between January 1, 2000, and December 31, 2016. Crude and adjusted odds ratios (ORs) and 95% CIs were calculated by conditional logistic regression overall and stratified by time between infection and Parkinson disease (5 years or less, more than 5 to 10 years, more than 10 years). Results Of 61 626 included individuals, 23 826 (38.7%) were female, and 53 202 (86.3%) were older than 60 years. A total of 10 271 individuals with Parkinson disease and 51 355 controls were identified. Influenza diagnosed at any time during a calendar year was associated with Parkinson disease more than 10 years later (OR, 1.73; 95% CI, 1.11-2.71). When influenza exposure was restricted to months of highest influenza activity, an elevated OR with a wider confidence interval was found (OR, 1.52; 95% CI, 0.80-2.89). There was no evidence of an association with any type of infection more than 10 years prior to Parkinson disease (OR, 1.04; 95% CI, 0.98-1.10). Several specific infections yielded increased odds of Parkinson disease within 5 years of infection, but results were null when exposure occurred more than 10 years prior. Conclusions and Relevance In this case-control study, influenza was associated with diagnoses of Parkinson disease more than 10 years after infection. These observational data suggest a link between influenza and Parkinson disease but do not demonstrate causality. While other infections were associated with Parkinson disease diagnoses soon after infection, null associations after more than 10 years suggest these shorter-term associations are not causal.
2
Date Added: Oct 14, 2021
Date Added: Oct 14, 2021
Brain function relies on efficient communications between distinct brain systems. The pathology of major depressive disorder (MDD) damages functional brain networks, resulting in cognitive impairment. Here, we reviewed the associations between brain functional connectome changes and MDD pathogenesis. We also highlighted the utility of brain functional connectome for differentiating MDD from other similar psychiatric disorders, predicting recurrence and suicide attempts in MDD, and evaluating treatment responses. Converging evidence has now linked aberrant brain functional network organization in MDD to the dysregulation of neurotransmitter signaling and neuroplasticity, providing insights into the neurobiological mechanisms of the disease and antidepressant efficacy. Widespread connectome dysfunctions in MDD patients include multiple, large-scale brain networks as well as local disturbances in brain circuits associated with negative and positive valence systems and cognitive functions. Although the clinical utility of the brain functional connectome remains to be realized, recent findings provide further promise that research in this area may lead to improved diagnosis, treatments, and clinical outcomes of MDD.
4
Date Added: Sep 9, 2021
Date Added: Sep 9, 2021
Abstract Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin ( HTT ) gene. The typical motor symptoms have been associated with basal ganglia pathology. However, psychiatric and cognitive symptoms often precede the motor component and may be due to changes in the limbic system. Recent work has indicated pathology in the hypothalamus in HD but other parts of the limbic system have not been extensively studied. Emerging evidence suggests that changes in HD also include white matter pathology. Here we investigated if the main white matter tract of the limbic system, the fornix, is affected in HD. We demonstrate that the fornix is 34% smaller already in prodromal HD and 41% smaller in manifest HD compared to controls using volumetric analyses of MRI of the IMAGE-HD study. In post-mortem fornix tissue from HD cases, we confirm the smaller fornix volume in HD which is accompanied by signs of myelin breakdown and reduced levels of the transcription factor myelin regulating factor but detect no loss of oligodendrocytes. Further analyses using RNA-sequencing demonstrate downregulation of oligodendrocyte identity markers in the fornix of HD cases. Analysis of differentially expressed genes based on transcription-factor/target-gene interactions also revealed enrichment for binding sites of SUZ12 and EZH2, components of the Polycomb Repressive Complex 2, as well as RE1 Regulation Transcription Factor. Taken together, our data show that there is early white matter pathology of the fornix in the limbic system in HD likely due to a combination of reduction in oligodendrocyte genes and myelin break down.
7
Date Added: Jul 21, 2021
Date Added: Jul 21, 2021
Background: Maximal inspiratory pressure (MIP) is a measure of inspiratory muscle strength. The prognostic importance of MIP for cardiovascular events among elderly community dwelling individuals is unknown. Diminished forced vital capacity (FVC) is a risk factor for cardiovascular events which remains largely unexplained. Methods: MIP was measured at the baseline examination of the Cardiovascular Health Study. Participants had to be free of prevalent congestive heart failure (CHF), myocardial infarction (MI), and stroke. Results: Subjects in the lowest quintile of MIP had a 1.5-fold increased risk of MI (HR 1.48, 95% CI 1.07 to 2.06) and cardiovascular disease (CVD) death (HR 1.54, 95% CI 1.09 to 2.15) after adjustment for non-pulmonary function covariates. There was a potential inverse relationship with stroke (HR 1.36, 95% CI 0.97 to 1.90), but there was little evidence of an association between MIP and CHF (HR 1.22, 95% CI 0.93 to 1.60). The addition of FVC to models attenuated the HR associated with MIP only modestly; similarly, addition of MIP attenuated the HR associated with FVC only modestly. Conclusions: A reduced MIP is an independent risk factor for MI and CVD death, and a suggestion of an increased risk for stroke. This association with MIP appeared to be mediated through mechanisms other than inflammation.
170
Date Added: Sep 8, 2021
Date Added: Sep 8, 2021
A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.
6
Date Added: Aug 29, 2021
Date Added: Aug 29, 2021
A normal functioning lymphatic pump mechanism and unimpaired venous drainage are required for the body to remove inflammatory mediators from the extracellular compartment. Impaired vascular perfusion and/or lymphatic drainage may result in the accumulation of inflammatory substances in the interstitium, creating continuous nociceptor activation and related pathophysiological states including central sensitization and neuroinflammation. We hypothesize that following trauma and/or immune responses, inflammatory mediators may become entrapped in the recently discovered interstitial, pre-lymphatic pathways and/or initial lymphatic vessels. The ensuing interstitial inflammatory stasis is a pathophysiological state, created by specific pro-inflammatory cytokine secretion including tumor necrosis factor alpha, interleukin 6, and interleukin 1b. These cytokines can disable the local lymphatic pump mechanism, impair vascular perfusion via sympathetic activation and, following transforming growth factor beta 1 expression, may lead to additional stasis through direct fascial compression of pre-lymphatic pathways. These mechanisms, when combined with other known pathophysiological processes, enable us to describe a persistent feed-forward loop capable of creating and maintaining chronic pain syndromes. The potential for concomitant visceral and/or vascular dysfunction, initiated and maintained by the same feed-forward inflammatory mechanism, is also described.
8
Date Added: Aug 3, 2021
Date Added: Aug 3, 2021
The pandemic caused by the SARS-CoV-2 has created the need of compounds able to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain. Doxycycline inhibited the transduction of the pseudotyped virus in Vero E6 and HEK-293 T cells stably expressing human receptor angiotensin-converting enzyme 2 but did not affect the entry and replication of SARS-CoV-2. Although this conclusion is apparently disappointing, it is paradigmatic of an experimental approach aimed at developing an integrated multidisciplinary platform. To avoid wasting precious time and resources we believe very stringent experimental criteria are needed in the preclinical phase, including infectious studies with SARS-CoV-2 in the platform before moving on to [failed] clinical trials. Author Summary The pandemic caused by the SARS-CoV-2 virus has created a completely unusual situation in rapidly searching for compounds able to interfere with the biological processes exploited by the virus. This new scenario has substantially changed the timing of drug development which has also resulted in the generation of controversial results, proving that the transition from computational screening to the clinical application requires great caution and careful studies. It is therefore necessary to establish new paradigms for evaluating the efficacy of a potential active molecule. We set up a preclinical platform aimed at identifying molecules active against SARS-CoV-2 infection developing a multidisciplinary approach based on very stringent experimental criteria, comprising in-silico studies, in vitro binding tests and infection studies with pseudovirus expressing the spike protein as well as clinically isolated SARS-CoV-2 strains. We focused our attention on doxycycline which has been suggested as potential therapeutic candidate for treating COVID-19 and is currently employed in about twenty clinical trials. Doxycycline resulted effective in inhibiting the transduction of pseudovirus but it did not affect the entry and replication of SARS-CoV-2. The results obtained underline the need to define more stringent and controlled pharmacological approaches before wasting precious time and resources with clinical trials.
19
Date Added: Sep 20, 2021
Date Added: Sep 20, 2021
Melanomas can have multiple coexisting cell states, including proliferative (PRO) versus invasive (INV) subpopulations that represent a “go or grow” trade-off; however, how these populations interact is poorly understood. Using a combination of zebrafish modeling and analysis of patient samples, we show that INV and PRO cells form spatially structured heterotypic clusters and cooperate in the seeding of metastasis, maintaining cell state heterogeneity. INV cells adhere tightly to each other and form clusters with a rim of PRO cells. Intravital imaging demonstrated cooperation in which INV cells facilitate dissemination of less metastatic PRO cells. We identified the TFAP2 neural crest transcription factor as a master regulator of clustering and PRO/INV states. Isolation of clusters from patients with metastatic melanoma revealed a subset with heterotypic PRO-INV clusters. Our data suggest a framework for the co-existence of these two divergent cell populations, in which heterotypic clusters promote metastasis via cell-cell cooperation.
9
Date Added: Aug 16, 2020
Date Added: Aug 16, 2020
Recent data have found that aging-related hearing loss (ARHL) is associated with the development of Alzheimer Disease (AD). However, the nature of the relationship between these two disorders is not clear. There are multiple potential factors that link ARHL and AD, and previous groups have speculated that common metabolic dysregulation may underlie the propensity to develop both disorders. Here, we investigate the distribution of serum lipidomic biomarkers in AD subjects with or without hearing loss in a publicly available dataset. Serum levels of 349 known lipids from 16 lipid classes were measured in 185 AD patients. Using previously defined co-regulated sets of lipids, both age- and sex-adjusted, we found that lipid sets enriched in phosphatidylcholine and phosphatidylethanolamine showed a strong association with hearing loss. Examination of biochemical classes confirmed these relationships and found that serum phosphatidylcholine levels were significantly lower in AD subjects with hearing loss. A similar relationship was not found in normal subjects. These data suggest that a synergistic relationship may exist between AD, hearing loss and metabolic biomarkers, such that in the context of a pathological state such as AD, alterations in serum metabolic profiles are also shared with hearing loss hearing loss. These data also point to a potential role for phosphatidylcholine, a molecule with antioxidant properties, in the underlying pathophysiology of ARHL in the context of AD, which has implications for our understanding and potential treatment of both disorders.
5
Date Added: Jun 14, 2021
Date Added: Jun 14, 2021
When an individual is under stress, the undesired effect on the brain often exceeds expectations. Additionally, when stress persists for a long time, it can trigger serious health problems, particularly depression. Recent studies have revealed that depressed patients have a higher rate of brain aging than healthy subjects and that depression increases dementia risk later in life. However, it remains unknown which factors are involved in brain aging triggered by chronic stress. The most critical change during brain aging is the decline in cognitive function. In addition, cellular senescence is a stable state of cell cycle arrest that occurs because of damage and/or stress and is considered a sign of aging. We used the chronic unpredictable stress (CUS) model to mimic stressful life situations and found that, compared with nonstressed control mice, CUS-treated C57BL/6 mice exhibited depression-like behaviors and cognitive decline. Additionally, the protein expression of the senescence marker p16INK4a was increased in the hippocampus, and senescence-associated β-galactosidase (SA-β-gal)-positive cells were found in the hippocampal dentate gyrus (DG) in CUS-treated mice. Furthermore, the levels of SA-β-gal or p16INK4a were strongly correlated with the severity of memory impairment in CUS-treated mice, whereas clearing senescent cells using the pharmacological senolytic cocktail dasatinib plus quercetin (D + Q) alleviated CUS-induced cognitive deficits, suggesting that targeting senescent cells may be a promising candidate approach to study chronic stress-induced cognitive decline. Our findings open new avenues for stress-related research and provide new insight into the association of chronic stress-induced cellular senescence with cognitive deficits.